Skip to content

Recursion

A recursive dfn can refer to itself using its name explicitly, but because we allow unnamed functions, we also need a special symbol for implicit self-reference: '∇'. For example:

      fact{          ⍝ Factorial ⍵.
          1: 1      ⍝ Small ⍵, finished,
          × -1     ⍝ Otherwise recur.
      }

Implicit self-reference using '∇' has the further advantage that it incurs less interpretative overhead and is therefore quicker. Tail calls using '∇' are particularly efficient.

Recursive dops refer to their derived functions, that is the operator bound with its operand(s) using or the operator itself using the compound symbol: ∇∇. The first form of self reference is by far the more frequently used.

      pow{           ⍝ Function power.
          =0:⍵       ⍝ Apply function operand ⍺ times.
          (-1) ⍺⍺  ⍝ ⍺⍺ ⍺⍺ ⍺⍺ ... ⍵
      }

Example

The following example shows a rather contrived use of the second form of (operator) self reference. The exp operator composes its function operand with itself on each recursive call. This gives the effect of an exponential application of the original operand function:

      exp{               ⍝ Exponential fn application.
          =0:⍺⍺         ⍝ Apply operand 2*⍺ times.
          (-1)⍺⍺⍺⍺ ∇∇  ⍝ (⍺⍺∘⍺⍺)∘( ... ) ... ⍵
      }
      succ{1+}          ⍝ Successor (increment).
      10 succ exp 0
1024

Example

     pow{ ⍝ Function power.
[1]        =0:⍵ ⍝ Apply function operand ⍺ times.
[2]        (-1) ⍺⍺  ⍝ ⍺⍺ ⍺⍺ ⍺⍺ ... ⍵
[3]    }
     
      4  pow 5000
¯0.2720968003

Example: Pythagorean triples

The following sequence shows an example of combining dfns and dops in an attempt to find Pythagorean triples: (3 4 5)(5 12 13) ...

      sqrt{*0.5}              ⍝ Square root.

      sqrt 9 16 25
3 4 5

      hyp{sqrt+/*2}          ⍝ Hypoteneuse of triangle.

      hyp(3 4)(4 5)(5 12)
5 6.403124237 13

      intg{=⌊}               ⍝ Whole number?

      intg 2.5 3 4.5
0 1 0

      pyth{intg hyp }         ⍝ Pythagorean pair?

      pyth(3 4)(4 9)(5 12)
1 0 1

      pairs{,⍳ }             ⍝ Pairs of numbers 1..⍵.

      pairs 3
 1 1  1 2  1 3  2 1  2 2  2 3  3 1  3 2  3 3

      filter{(⍺⍺ )/}         ⍝ Op: ⍵ filtered by ⍺⍺.

      pyth filter pairs 12      ⍝ Pythagorean pairs 1..12
 3 4  4 3  5 12  6 8  8 6  9 12  12 5  12 9

So far, so good, but we have some duplicates: (6 8) is just double (3 4).

      rpm{                    ⍝ Relatively prime?
          =0:⍺=1              ⍝ C.f. Euclid's gcd.
            |
      }                      ⍝ Note the /¨

      rpm(2 4)(3 4)(6 8)(16 27)
0 1 0 1

      rpm filter pyth filter pairs 20
 3 4  4 3  5 12  8 15  12 5  15 8

We can use an operator to combine the tests:

      and{                    ⍝ Lazy parallel 'And'.
          mask⍺⍺             ⍝ Left predicate selects...
          mask\⍵⍵ mask/       ⍝ args for right predicate.
      }

      pyth and rpm filter pairs 20
 3 4  4 3  5 12  8 15  12 5  15 8

Better, but we still have some duplicates: (3 4) (4 3)

      less{</}
      less(3 4)(4 3)
1 0

      less and pyth and rpm filter pairs 40
 3 4  5 12  7 24  8 15  9 40  12 35  20 21

And finally, as promised, triples:

      {,hyp }¨less and pyth and rpm filter pairs 35
 3 4 5  5 12 13  7 24 25  8 15 17  12 35 37  20 21 29

A Larger Example

Function tokens uses nested local dfns to split an APL expression into its constituent tokens. Note that all calls on the inner functions: lex, acc, and the unnamed dfn in each token case, are tail calls. In fact, the only stack calls are those on function: all, and the unnamed function: {⍵∨¯1⌽⍵}, within the "Char literal" case.

    tokens{                        ⍝ Lex of APL src line.
        alph⎕A,Á,'_∆⍙',2617⎕AV  ⍝ Alphabet for names.
        all{+/^\}               ⍝ No. of leading ⍺∊⍵.
        acc{(,↑/)lex⊃↓/}        ⍝ Accumulate tokens.
        lex{
            0=⍴⍵:⍺  hd          ⍝ Next char else done.

            hd=' ':⍺{               ⍝ White Space.
                size all' '
                 acc size 
            }

            hdalph:⍺{              ⍝ Name
                size all alph,⎕D
                 acc size 
            }

            hd'⎕:':⍺{              ⍝ System Name/Keyword
                size all hd,alph
                 acc size 
            }

            hd='''':⍺{              ⍝ Char literal
                size+/^\{¯1}\hd=
                 acc size 
            }

            hd⎕D,'¯':⍺{            ⍝ Numeric literal
                size all ⎕D,'.¯E'
                 acc size 
            }

            hd='⍝':⍺ acc()       ⍝ Comment
             acc 1                ⍝ Single char token.
        }
        (0⍴⊂'')lex,
    }
      display tokens'xtok←size↑srce ⍝ Next token'
.-------------------------------------------------.
| .---. .. .---. .. .---. .-. .-----------. |
| |xtok| || |size| |↑| |srce| |  | |⍝ Next token| |
| '----' '-' '----' '-' '----' '--' '------------' |
'∊-------------------------------------------------'