Rank R←{X}(f⍤B)Y
Classic Edition
The symbol ⍤
is not available in Classic Edition, and the Rank operator is instead represented by ⎕U2364
.
The Rank operator ⍤
applies monadic function f
successively to sub-arrays of Y
, or dyadic function f
between sub-arrays of X
and Y
. Sub-arrays are selected by right operand B
.
B
is a numeric scalar or vector of up to three items, specifying the ranks of the cells to which f
should be applied. The most general form is a three item vector p q r
, where:
p
specifies the rank of the argument cells whenf
is applied monadicallyq
specifies the rank of the left argument cells whenf
is applied dyadicallyr
specifies the rank of the right argument cells whenf
is applied dyadically
If B
is a two item vector q r
, it is implicitly extended to r q r
. If B
has a single item r
, it is implicitly extended to r r r
.
If an item k
of B
is zero or positive it selects k-cells of the corresponding argument. If it is negative, it selects (r+k)-cells where r
is the rank of the corresponding argument. A value of ¯1
selects major cells. For further information, see Cells and Sub-arrays.
If X
is omitted, f
may be any monadic function that returns a result. Y
may be any array. The Rank operator ⍤
applies function f
successively to the sub-arrays in Y
specified by p
(that is, the first item of B
, as specified or implicitly extended).
If X
is specified, it may be any array and f
may be any dyadic function that returns a result. Y
may be any array. In this case, the Rank operator applies function f
successively between the sub-arrays in X
specified by q
and the sub-arrays in Y
specified by r
.
The sub-arrays of R
are the results of the individual applications of f
. If these results differ in rank or shape, they are extended to a common rank and shape in the manner of Mix. See Mix.
Notice that it is necessary to prevent the right operand k
binding to the right argument. This can be done using parentheses, for example, (f⍤1)Y
. The same can be achieved using ⊢
, for example, f⍤1⊢Y
because ⍤
binds tighter to its right operand than ⊢
does to its left argument, and ⊢
therefore resolves to Identity.
Monadic Examples
Using enclose (⊂
) as the left operand elucidates the workings of the rank operator.
Y
36 99 20 5
63 50 26 10
64 90 68 98
66 72 27 74
44 1 46 62
48 9 81 22
⍴Y
2 3 4
⊂⍤2 ⊢Y
┌───────────┬───────────┐
│36 99 20 5│66 72 27 74│
│63 50 26 10│44 1 46 62│
│64 90 68 98│48 9 81 22│
└───────────┴───────────┘
⊂⍤1 ⊢Y
┌───────────┬───────────┬───────────┐
│36 99 20 5 │63 50 26 10│64 90 68 98│
├───────────┼───────────┼───────────┤
│66 72 27 74│44 1 46 62 │48 9 81 22 │
└───────────┴───────────┴───────────┘
The function {(⊂⍋⍵)⌷⍵}
sorts a vector.
{(⊂⍋⍵)⌷⍵} 3 1 4 1 5 9 2 6 5
1 1 2 3 4 5 5 6 9
The rank operator can be used to apply the function to sub-arrays; in this case to sort the 1-cells (rows) of a 3-dimensional array.
Y
36 99 20 5
63 50 26 10
64 90 68 98
66 72 27 74
44 1 46 62
48 9 81 22
({(⊂⍋⍵)⌷⍵}⍤1)Y
5 20 36 99
10 26 50 63
64 68 90 98
27 66 72 74
1 44 46 62
9 22 48 81
Dyadic Examples
10 20 30 (+⍤0 1)3 4⍴⍳12
10 11 12 13
24 25 26 27
38 39 40 41
Using the function {⍺ ⍵}
as the left operand demonstrates how the dyadic case of the rank operator works.
10 20 30 ({⍺ ⍵}⍤0 1)3 4⍴⍳12
┌──┬─────────┐
│10│0 1 2 3 │
├──┼─────────┤
│20│4 5 6 7 │
├──┼─────────┤
│30│8 9 10 11│
└──┴─────────┘
Note that a right operand of ¯1
applies the function between the major cells (in this case elements) of the left argument, and the major cells (in this case rows) of the right argument.
10 20 30 ({⍺ ⍵}⍤¯1)3 4⍴⍳12
┌──┬─────────┐
│10│0 1 2 3 │
├──┼─────────┤
│20│4 5 6 7 │
├──┼─────────┤
│30│8 9 10 11│
└──┴─────────┘