⊆ partition
Partition R←X⊆[K]Y
!!! note "Classic Edition" The symbol `⊆` (Left Shoe Underbar) is not available in Classic Edition, and Partition is instead represented by `⎕U2286`. `Y` may be any non-scalar array. `X` must be a simple scalar or vector of non-negative integers. The axis specification is optional. If present, it must be a simple integer scalar or one element array representing an axis of `Y`. If absent, the last axis is implied. `R` is an array of the elements of `Y` partitioned according to `X`. A new partition is started in the result whenever the corresponding element in `X` is greater than the previous one. Items in `Y` corresponding to `0`s in `X` are not included in the result. Note that if `⎕ML≥3`, the symbol `⊂` means the same as `⊆`.Examples
⎕ML←3
]display 1 1 1 2 2 3 3 3⊆'NOWISTHE'
┌→─────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ │
│ │NOW│ │IS│ │THE│ │
│ └───┘ └──┘ └───┘ │
└∊─────────────────┘
]display 1 1 1 0 0 3 3 3⊆'NOWISTHE'
┌→────────────┐
│ ┌→──┐ ┌→──┐ │
│ │NOW│ │THE│ │
│ └───┘ └───┘ │
└∊────────────┘
TEXT←' NOW IS THE TIME '
]display (' '≠TEXT)⊆TEXT
┌→────────────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ ┌→───┐ │
│ │NOW│ │IS│ │THE│ │TIME│ │
│ └───┘ └──┘ └───┘ └────┘ │
└∊────────────────────────┘
]display CMAT←⎕FMT(' ',ROWS),COLS⍪NMAT
┌→─────────────────────────┐
↓ Jan Feb Mar │
│ Cakes 0 100 150 │
│ Biscuits 0 0 350 │
│ Buns 0 1000 500 │
└──────────────────────────┘
]display (∨⌿' '≠CMAT)⊆CMAT ⍝ Split at blank cols.
┌→──────────────────────────────┐
↓ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │ │ │Jan│ │ Feb│ │Mar│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Cakes │ │ 0│ │ 100│ │150│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Biscuits│ │ 0│ │ 0│ │350│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Buns │ │ 0│ │1000│ │500│ │
│ └────────┘ └───┘ └────┘ └───┘ │
└∊──────────────────────────────┘
]display N←4 4⍴⍳16
┌→──────────┐
↓ 1 2 3 4│
│ 5 6 7 8│
│ 9 10 11 12│
│13 14 15 16│
└~──────────┘
]display 1 1 0 1⊆N
┌→─────────────┐
↓ ┌→──┐ ┌→┐ │
│ │1 2│ │4│ │
│ └~──┘ └~┘ │
│ ┌→──┐ ┌→┐ │
│ │5 6│ │8│ │
│ └~──┘ └~┘ │
│ ┌→───┐ ┌→─┐ │
│ │9 10│ │12│ │
│ └~───┘ └~─┘ │
│ ┌→────┐ ┌→─┐ │
│ │13 14│ │16│ │
│ └~────┘ └~─┘ │
└∊─────────────┘
]display 1 1 0 1⊆[1]N
┌→────────────────────────┐
↓ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ │
│ │1 5│ │2 6│ │3 7│ │4 8│ │
│ └~──┘ └~──┘ └~──┘ └~──┘ │
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→─┐ │
│ │13│ │14│ │15│ │16│ │
│ └~─┘ └~─┘ └~─┘ └~─┘ │
└∊────────────────────────┘