Matrix Inverse R←⌹Y
Y
must be a simple array of rank 2 or less. Y
must be non-singular. If Y
is a scalar, it is treated as a one-element matrix. If Y
is a vector, it is treated as a single-column matrix. Y
must have at least the same number of rows as columns.
R
is the inverse of Y
if Y
is a square matrix, or the left inverse of Y
if Y
is not a square matrix. That is, R+.×Y
is an identity matrix.
The shape of R
is ⌽⍴Y
.
Examples
M
2 ¯3
4 10
+A←⌹M
0.3125 0.09375
¯0.125 0.0625
Within calculation accuracy, A+.×M
is the identity matrix.
A+.×M
1 0
0 1
j←{⍺←0 ⋄ ⍺+0J1×⍵}
x←j⌿¯50+?2 5 5⍴100
x
¯37J¯41 25J015 ¯5J¯09 3J020 ¯29J041
¯46J026 17J¯24 17J¯46 43J023 ¯12J¯18
1J013 33J025 ¯47J049 ¯45J¯14 2J¯26
17J048 ¯50J022 ¯12J025 ¯44J015 ¯9J¯43
18J013 8J038 43J¯23 34J¯07 2J026
⍴x
5 5
id←{∘.=⍨⍳⍵} ⍝ identity matrix of order ⍵
⌈/,| (id 1↑⍴x) - x+.×⌹x
3.66384E¯16