Circular R←X○Y

Y must be numeric. X must be an integer in the range ¯12 ≤ X ≤ 12. R is numeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and complex functions to apply to Y, from the following table. Note that when Y is complex, a and b are used to represent its real and imaginary parts, while θ represents its phase.

(-X) ○ Y X X ○ Y
(1-Y*2)*.5 0 (1-Y*2)*.5
Arcsin Y 1 Sine Y
Arccos Y 2 Cosine Y
Arctan Y 3 Tangent Y
Y=¯1:0Y≠¯1:(Y+1)×((Y-1)÷Y+1)*0.5 4 (1+Y*2)*.5
Arcsinh Y 5 Sinh Y
Arccosh Y 6 Cosh Y
Arctanh Y 7 Tanh Y
-8○Y 8 (-1+Y*2)*0.5
Y 9 a
+Y 10 |Y
Y×0J1 11 b
*Y×0J1 12 θ

Examples

      0 ¯1  1
0 1.570796327

      1(PI1)÷2 3 4
1 0.8660254038  0.7071067812

      2PI÷3
0.5
      9 113.5J¯1.2
3.5 ¯1.2

      9 11∘.3.5J¯1.2 2J3 3J4
 3.5 2 3
¯1.2 3 4

      ¯4¯1
0